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Abstract. Let E be a normed space, a∗
1�����a

∗
m∈E∗, c1�����cm∈R and S=	x∈E��a∗

i �x�−ci�0,
1� i�m� �=∅. Let ∗= inf	�0 �dist�x�S��max	��a∗

i �x�−ci�+� i=1�����m� ∀x∈E�. We give
some exact formulas for ∗.
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1. Introduction

Let E be a normed space and E∗ the dual space of E. Let a∗
1�����a

∗
m∈E∗,

c1�����cm∈R and S denote the solution set of the following inequality system

�a∗
i �x��ci� i=1�����m� (1)

Assuming that S is nonempty, the fundamental result of Hoffman [5] asserts that
if E=Rn then there exists a constant  >0 such that

dist�x�S�����x��+ for all x∈E� (2)

where ��x� �=max	�a∗
i �x�−ci� i=1�����m�. A coefficient  satisfying (2) is

called a Lipschitz error bound of the system (1). Let ∗ denote the infimum of all
Lipschitz error bounds; namely

∗=sup
{

dist�x�S�

���x��+
� x∈E\S

}
�
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No. 10361008) and Natural Science Foundation of Yunnan Province, P.R. China (Grant No. 2003A0002M).
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Since (1) has a Lipschitz error bound, ∗ does exist of course (in view of Theorem
2.2 in Burke and Ferris [2]), but the interest remains in expressing ∗ in a simple
way. We show in Theorem 2.3 that

∗=
1

min	�D� D∈��I��

where I=	1�����m����I� is a certain (finite) family of subsets of I and �D is
defined by

�D=min
{∥∥∥∥∑

i∈D

�ia
∗
i

∥∥∥∥ ��i�0�
∑
i∈D

�i=1
}
�

Note that the subprogramme of computing �D is a convex minimization problem
over a simplex. In particular if E is finite dimensional with the Euclidean norm
then that is a quadratic minimization problem while if E is finite dimensional
with the l1- or the l-norm then that is simply a linear programming problem.
Consequently ∗ is given as a finitely computable object.

Lipschitz error bounds are related to the convergence rate of algorithms
appearing in many applications. Several authors considered the bounds, seeing
Mangasarian and Shiau [9], Bergthaller and Singer [1], Li [8], Guler, Hoffman
and Rothblum [4], Burke and Tseng [3] and references therein. In particular,
Guler, Hoffman and Rothblum [4] (Theorem 3.2 with the maximum norm in Rm)
proved that

1 �=sup
{ m∑

i=1

�i �
(
�1������m

)
is an extreme point of �

(
a∗

1�����a
∗
m

)}
(3)

is a Lipschitz error bound, where

�
(
a∗

1�����a
∗
m

)
�=

{(
�1������m

)∈Rm
+ �

∥∥∥∥ m∑
i=1

�ia
∗
i

∥∥∥∥�1
}
�

Let

� �=	D⊂ I � 	a∗
i � i∈D� is linearly independent��

Burke and Tseng [3] (Theorem 8), in the case when their cone K=Rm
− and

X=Rn, proved that

2 �=max
{∑

i∈D

�i ��i�0�

∥∥∥∥∑
i∈D

�ia
∗
i

∥∥∥∥=1� D∈�
}
� (4)

is a Lipschitz error bound. As noted in Burke and Tseng [3], 1=2. Let

�̂ =	D∈� � there exists x∈S such that �a∗
i �x�=ci ∀i∈D��

Bergthaller and Singer [1] (Theorem 1.3) proved that

3 �=max
{∑

i∈D

�i� �i�0�

∥∥∥∥∑
i∈D

�ia
∗
i

∥∥∥∥=1� D∈ �̂
}

(5)
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is also a Lipschitz error bound. Since �̂ ⊂� , 2�3.
Take E=R, a∗

1 =1, a∗
2 = 1

2 , a∗
3 = 1

3 , a∗
4 = 1

4 , c1=3, c2=1, c3= 2
3 and c4=1. Then

��x�=max	a∗
i x−ci �1� i�4�=




1
4x−1� x�−4�
1
3x− 2

3 � −4�x�2�
1
2x−1� 2�x�4�

x−3� 4�x�

Then S = 	x ∈R���x��0�= �−�2�. In this case, � = 		i� �1� i� 4�,
�̂ =		2��	3��. It is easy to verify that 1=2=4>3=3 while 2 obtained by
Theorems 2.2 and 2.3 is the least Lipschitz error bound. This shows that in
general 3 (a fortiori, 1 and 2) is not the least Lipschitz error bound of the
inequality system (1).

2. Main Results

Throughout this paper, let E denote a normed space, a∗
1�����a

∗
m∈E∗ and

c1�����cm∈R; let

S �=	x∈E ��a∗
i �x��ci� i=1�����m��

We always assume that ∅ �=S �=E. Let I=	1�����m� and

��x�=max	�a∗
i �x�−ci � i∈ I� ∀x∈E�

Then S=	x∈E ���x��0�. We use ��I� to denote the family of all subsets D
of I such that 	a∗

i � i∈D� is a maximal linearly independent subset of 	a∗
i � i∈ I�.

DEFINITION 2.1. We say that a subset D of I has property �W� if the following
conditions hold.

(i) D∈��I�.
(ii) Given a solution sD of the linear equation system

�a∗
i �x�−ci=0 ∀i∈D (6)

and a solution eD of the linear equation system

�a∗
i �x�=1 ∀i∈D� (7)

one has �a∗
j �sD�−cj �0 for each j∈ I\D and the strict inequality

�a∗
j �sD�−cj <0 holds whenever �a∗

j �eD�>1 and j∈ I\D.

Let ��I� denote the family of all subsets of I with property �W�. For each
D∈��I�, let

D �=dist�eD�CD� (8)
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where CD �=	x∈E ��a∗
i �x��0�i∈D�. Note from (i) of Definition 2.1 that each

of (6) and (7) has solutions and that
⋂

i∈Dker�a∗
i �=

⋂
i∈I ker�a∗

i �. Therefore, for
another solution s′D of the linear equation system (6), �a∗

i �s
′
D�=�a∗

i �sD� for each
i∈ I . In fact, the solution set of the linear equation system (6) is a linear variety
paralleled to

⋂
i∈I ker�a∗

i �. Similar remarks hold for eD and (7). Hence, to verify
(ii) one needs only to do so for any one particular pair of solutions sD�eD of
(6), (7) and hence ��I� is well defined; moreover D does not depend on the
particular choice of eD.

Throughout, let ∗ denote the least Lipschitz error bound for the inequality
system (1), that is,

∗= inf	 >0� dist�x�S�����x��+� ∀x∈E��

THEOREM 2.1. ∗=max	D �D∈��I��.

The proof of this result is based on geometrically intuitive arguments but is
rather intricate to verify in details. We postpone the proof to the next section.

THEOREM 2.2. For each D∈��I�, let

̄D=max
{∑

i∈D

�i ��i�0�

∥∥∥∥∑
i∈D

�ia
∗
i

∥∥∥∥=1
}
�

Then ̄D=D for each D∈��I� and hence

∗=max	̄D �D∈��I���

Proof. By [1, Theorem 1.1], for each D∈��I�

D=dist�eD�CD�=max
{∑

i∈D

�i�a∗
i �eD� ��i�0�

∥∥∥∥∑
i∈D

�ia
∗
i

∥∥∥∥=1
}
�

Since �a∗
i �eD�=1 for each i∈D, it follows that

D=max
{∑

i∈D

�i ��i�0�

∥∥∥∥∑
i∈D

�ia
∗
i

∥∥∥∥=1
}
= ̄D�

By Theorem 2.1, one has that ∗=max	̄D �D∈��I��. �

THEOREM 2.3. For each D∈��I�, let

�D �=min
{∥∥∥∥∑

i∈D

�ia
∗
i

∥∥∥∥ ��i�0�
∑
i∈D

�i=1
}
�

Then ̄D= 1
�D
for each D∈��I� and hence

∗=1/min	�D �D∈��I���
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Proof. Pick ��′
i�i∈D∈R

�D�
+ with

∑
i∈D�′

i=1 such that �D=�∑i∈D�′
ia

∗
i �, where

�D� denotes the number of elements in D. Then �∑i∈D

�′
i

�D
a∗

i �=1 and hence

̄D�
∑
i∈D

�′
i

�D

= 1
�D

� (9)

For each ��i�i∈D∈R
�D�
+ with �∑i∈D�ia

∗
i �=1, let &k= �k∑

i∈D�i
for each k∈D. Then∑

k∈d&k=1. Therefore,

�D�

∥∥∥∥∑
k∈D

&ka
∗
k

∥∥∥∥= 1∑
i∈D�i

∥∥∥∥∑
k∈D

�ka
∗
k

∥∥∥∥= 1∑
i∈D�i

�

that is, 1
�D

�
∑

i∈D�i. It follows from the definition of ̄D that 1
�D

� ̄D. This and
(9) imply that ̄D= 1

�D
. The proof is completed.

Let

4 �=max
{
dist�eD�CD� �D∈��I�

}
�

5 �=max
{∑

i∈D

�i ��i�0�

∥∥∥∥∑
i∈D

�ia
∗
i

∥∥∥∥=1� D∈��I�

}

and

6 �=1/min
{∥∥∥∥∑

i∈D

�ia
∗
i

∥∥∥∥ ��i�0�
∑
i∈D

�i=1� D∈��I�

}
�

Since ��I�⊂��J�, Theorems 2.1, 2.2 and 2.3 imply the following result.

COROLLARY 2.1. Each of 4, 5 and 6 is a Lipschitz error bound of (1).

In general the constants in corollary 2.1 are not necessarily the sharpest but,
on the other hand, they do have an advantage that they only depend on a∗

i ’s (not
on ci’s).

The following theorem is taken from Theorem 10 of [10].

THEOREM B. Let gi �R
n→R be a continuous convex function for i=1�����m

and S=	x∈Rn �gi�x��0�i=1�����m�. Let

∗ �= inf	�0 �dist�x�S��max	�gi�x��+ � i=1�����m� ∀x∈Rn��
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Suppose that Abadie’s CQ holds for S at each feasible point x
(i.e., N�x�S�=	

∑
i∈I�x��iv

i ��i�0�vi∈-gi�x��i∈ I�x��, where I�x�=	1� i�m:
gi�x��gj�x��1�j�m��. Then

∗ = 1/inf
{

sup	vT
∑

j∈I�x�

�jv
j� v∈-gi�x�� i∈ I�x��� �j �0�

∥∥∥∥ ∑
j∈I�x�

�jv
j

∥∥∥∥=1� vj ∈-gj�x�� j∈ I�x�� x∈-S

}
� (10)

where -S denotes the boundary of S.
In the case when each gi�x�=a∗T

i x−ci with a∗
i ∈Rn and ci∈R for i=1�����m,

where a∗T
i denotes the transpose of a∗

i , -gi�x�=	a∗
i � and (10) reads

∗ = 1/inf
{

max
{
a∗T

i

∑
j∈I�x�

�ja
∗
j � i∈ I�x�

}
� �j �0�

∥∥∥∥ ∑
j∈I�x�

�ja
∗
j

∥∥∥∥=1� j∈ I�x�� x∈-S

}
� (11)

On the other hand, Theorem 2.2 and Theorem 2.3 imply that

∗ = sup
{∑

i∈D

�i ��i�0�

∥∥∥∥∑
i∈D

�ia
∗
i

∥∥∥∥=1� D∈��I�

}
(12)

= 1/min
{∥∥∥∥∑

i∈D

�i�
∗
i

∥∥∥∥� �i�0�
∑
i∈D

�i=1� D∈��I�

}
� (13)

Though (11), (12) and (13) give the same constant ∗, (12) and (13) appear to
be simpler: first,��I� is a finite family, secondly, by the definition of��I�, one
has that for each D∈��I� there exists sD∈-S such that D⊂ I�sD�. Moreover,
Theorem 2.2 and 2.3 are valid in the general setting of normed spaces (finite or
infinite dimensions) while the formulation of (10) and (11) requires the inner
product structure. On the other hand, to compute ∗ in terms of the formulas
(11), one needs to solve a minimization problem over an infinite set. Noting the
finiteness of 	ai �1� i�m�, it is possible that this problem can be reduced to
minimizing the same objective function over a finite set. But this would not be as
explicit as (12) and (13) as it is not easy to provide concrete steps to identify
this finite set.

We conclude this section with a summary giving steps to determine the least
error bound ∗.

Step 1. Determine ��I� (e.g., one can determine ��I� by using Gram–Schmidt
process when E is of an inner product structure).
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Step 2. Find all elements in ��I� with the property �W�. Let D∈��I�. To
determine whether or not D∈��I�, one only needs to complete the
following procedures (1) and (2)).

(1) Solve two linear equation systems:

�a∗
i �x�−ci=0� i∈D (I)

�a∗
i �x�=1� i∈D (II)

(both (I) and (II) can be solved as 	a∗
i � i∈D� is linearly independent).

(2) Pick an arbitrary pair �sD�eD� such that sD and eD are solutions of
(I) and (II) respectively. Calculate �j =�a∗

j �sD�−cj and /j =�a∗
j �eD�

for each j∈ I\D. If �j �0 for each j∈ I\D and �j <0 when j∈ I\D
with /j >1 then D∈��I�; otherwise D �∈��I�. [This criterion does
not depend on the particular choice of the pair.]

Step 3. Calculate ̄D or �D for each D∈��I�.
Step 4. Calculate ∗ by virtue of Theorems 2.2 or 2.3.

Remark. Computational works involving in Steps 1 and 2 can be very large
(cf. [6, p. 207]).

3. Proof of Theorem 2.1

The proof is divided into several steps which will be presented as lemmas. For
convenience we first set out notations (that will be used throughout this section).
For a subset Y of E, let -�Y � and ext(Y) respectively denote the topological
boundary and the extreme point set (consisting of all extreme points) of Y . For
each x∈E, let

I�x� �=	i∈ I � �a∗
i �x�−ci=��x���

where � and I are as in the beginning of Section 2. For each t∈R, let
St �=	x∈E ���x�� t� (and hence S=S0). Let

Z+ �=	�x��∈E×R� �a∗
i �x�−�ci� i∈ I�

and let / be defined by

/�= inf	 >0 � there exists x∈E×R such that �x��∈ ext�Z+���

Then Z+ is a polyhedron in E×R and so the extreme point set ext�Z+� is a finite
set; consequently />0.

LEMMA 3.1. Suppose that E∗=span	a∗
i � i∈ I�. Then there exists finitely

many subsets I1�����Ip of I and 	s1�����sp�e1�����ep�⊂E such that the following
properties are satisfied (P will denote the set 	1�����p�).
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(i) E∗=span	a∗
i � i∈ Ij�� ∀j∈P.

(ii) �a∗
i �sj�−ci=0 and �a∗

i �ej�=1 ∀i∈ Ij and ∀j∈P.
(iii) I�sj+tej�= Ij ∀t∈�0�/� and ∀j∈P.
(iv) ext�St�=	sj+tej � j∈P� ∀t∈�0�/�.

Proof. Let t∈�0�/� and u∈ext�St�. Clearly it suffices to show that

(a) E∗=span	a∗
i � i∈ I�u�� and that there exist su�eu∈E with the following

properties.
(b) �a∗

i �su�−ci=0 and �a∗
i �eu�=1 ∀i∈ I�u�.

(c) �a∗
i �su+t′eu�−ci <t′ ∀t′ ∈�0�/� and ∀i∈ I\I�u�.

(d) su+t′eu∈ext�St′� ∀t′ ∈�0�/�.

To show (a), suppose to the contrary that E∗ �=span	a∗
i � i∈ I�u��. Then there

exists x0∈E\	0� such that �a∗
i �x0�=0 for all i∈ I�u�. Noting that �a∗

i �u�−ci <
��u�= t (as u∈ext�St�⊂-�St�� for each i∈ I\I�u�, it follows that there exists
6>0 small enough such that �a∗

i �u±6x0�−ci� t for all i∈ I , that is, u±6x0∈St,
contradicting u∈ext�St�. Therefore, (a) holds. Thus there exists a subset D of
I�u� such that 	a∗

i � i∈D� is a basis of E∗. This implies that there exists a unique
pair �su�eu�∈E×E such that

�a∗
i �su�−ci=0 and �a∗

i �eu�=1 ∀i∈D� (14)

Hence

�a∗
i �su+teu�−ci= t=��u�=�a∗

i �u�−ci ∀i∈D�

Since 	a∗
i � i∈D� is a basis of E∗, it follows that u=su+teu. For each i∈ I , let

7i denote the hyperplane 	�x��∈E×R��a∗
i �x�−=ci�. Then ∩i∈D7i is a line

in E×R. It follows from (14) that

�su�0�+R�eu�1�=
⋂
i∈D

7i� (15)

where R�eu�1� consists of all t�eu�1� with t∈R. We claim that

�su�0�+R�eu�1�=
⋂

i∈I�u�

7i� (16)

Indeed if (16) is not true, then (15) implies that there exists i′ ∈ I�u�\D such
that �su�0�+R�eu�1� is not a subset of 7i′ . It follows from u=su+teu that
��su�0�+R�eu�1��

⋂
7i′ =	�u�t��, that is �

⋂
i∈D7i�∩7i′ =	�u�t��. Noting that

�
⋂

i∈D7i�∩7i′ ∩Z+ is an extreme subset of Z+, it follows that �u�t�∈ext�Z+�,
contradicting t∈�0�/� and the definition of /. This shows that (16) holds and
hence (b) holds. To prove (c), suppose to the contrary that there exists i0∈ I\I�u�
and t0∈�0�/� such that

�a∗
i0
�su+t0eu�−ci0

� t0� (17)
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Note that �a∗
i �su+teu�−ci <��u�= t�i�e���a∗

i �su+teu�−t<ci� for each
i∈ I\I�u�. Consequently, it holds that for each i∈ I\I�u��i >0 where

i �=sup	 >0 ��a∗
i �su+��1−��t+�t0�eu�−�1−��t−�t0 <ci� ∀�∈ �0����

Note that i0
�1 thanks to (17). Take j∈ I\I�u� such that j =min	i � i∈ I\I�u��.

Then j ∈�0�1� and

�a∗
i �su+��1−j�t+jt0�eu�−�1−j�t−jt0�ci� ∀i∈ I\I�u�8

moreover, the equality holds if i=j. This and (b) imply that

�su+��1−j�t+jt0�eu��1−j�t+jt0�∈
( ⋂

i∈I�u�

7i

)
∩7j∩Z+�

Note that

�su+��1−j�t+jt0�eu��1−j�t+jt0��ext�Z+�

(by the definition of / and 0<�1−j�t+jt0 </) and that �
⋂

i∈I�u�7i�∩7j∩Z+
is an extreme subset of Z+. Therefore �

⋂
i∈I�u�7i�∩7j must be a line containing

the point �su+��1−j�t+jt0�eu��1−j�t+jt0�. This and (16) imply that

�su�0�+R�eu�1�=
( ⋂

i∈I�u�

7i

)
∩7j�

Thus �u�t�=�su+teu�t�∈7j , that is, �a∗
j �u�−cj = t=��u�, contradicting

j∈ I\I�u�. It remains to show (d). By virtue of (a) and (b), one has that⋂
i∈I�u�

	x∈E ��a∗
i �x�−ci= t′�=	su+t′eu�� ∀t′ ∈�0�/�8

it follows from (c) that su+t′eu∈St′ and consequently that su+t′eu∈ext�St′� for
each t′ ∈�0�/�. This shows that (d) holds. The proof is completed. �

LEMMA 3.2. Suppose that E∗=span	a∗
i � i∈ I�. Let subsets I1�����Ip of I

and 	s1�����sp�e1�����ep�⊂E be such that (i)–(iv) of Lemma 3.1 hold. Let
P �=	1�����p� and for each j∈P,

Cj �=	x∈E� �a∗
i �x��0� ∀i∈ Ij��

Then ∗=max	dist�ej�Cj� � j∈P�.
Proof. For each t∈R and j∈P, define St�j� by

St�j�� =	x∈E ��a∗
i �x�−ci� t� ∀i∈ Ij��
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By (i) and (ii) of Lemma 3.1 it is easy to verify that St�j�=sj+tej+Cj and
S⊂S0�j�=sj+Cj for each t∈R and each j∈P. Take 9∈�0�/�. Then

dist�sj+9ej�sj+Cj��dist�sj+9ej�S��∗��sj+9ej�=∗9� ∀j∈P (18)

where the last equality is due to (ii) and (iii) of Lemma 3.1. Making use of the
fact that Cj =9Cj , (18) implies that

9dist�ej�Cj�=dist�sj+9ej�sj+Cj��∗9�

Therefore,

∗�max	dist�ej�Cj� � j∈P�� (19)

Let z∈E with ��z�>0. Take a sequence 	6k� in (0, min	��z��/�) convergent to
0. By (iii) of Lemma 3.1 there exists k >0 such that for each j∈P, the inequality

�a∗
i �·�−ci <��·�� ∀i∈ I\Ij (20)

holds on the ball B�sj+6kej�k� with center sj+6kej and radius k. Pick a
sequence 	tk� convergent to 0 with each tk∈�6k�min	��z��/�� such that

�tk−6k��ej�<
k

2
� ∀j∈P�

We claim that

dist�sj+tkej�S6k
�=dist�sj+tkej�S6k

�j��� ∀j∈P� (21)

In fact, pick skj ∈S6k
�j� such that

dist�sj+tkej�S6k
�j��=�sj+tkej−skj��

To verify (21), we need show that skj ∈S6k
(noting S6k

⊂S6k
�j��, and equivalently

that �a∗
j �skj�−ci�6k for each i∈ I\Ij , which clearly follows from (20) provided

we can show that skj belongs to B�sj+6kej�k�. This later condition is indeed
satisifed as

�sj+tkej−skj��dist�sj+tkej�S6k
���sj+tkej−�sj+6kej��

(the last inequality holds as sj+6kej ∈S6k
), and so

�sj+6kej−skj� � �sj+6kej−�sj+tkej��+�sj+tkej−skj�
� 2�sj+tkej−�sj+6kej��=2�tk−6k��ej�<k�
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Therefore (21) holds. Take xk∈-�S6k
� such that dist�z�S6k

�=�z−xk�; then
��xk�=6k. Define zk by

zk=
tk−6k

��z�−6k

z+
(

1− tk−6k

��z�−6k

)
xk�

Then

��zk��
tk−6k

��z�−6k

��z�+
(

1− tk−6k

��z�−6k

)
��xk�= tk�

showing that zk∈Stk
; moreover

dist�zk�S6k
�=�zk−xk�=

tk−6k

��z�−6k

dist�z�S6k
�� (22)

We claim that

dist�zk�S6k
��max	dist�sj+tkej�S6k

�� j∈P�� (23)

Note that Stk
is a polyhedron in E containing no lines; hence by [11, Theorem 18.5]

one has that Stk
=co�ext�Stk

��+Rec�Stk
�, where Rec�Stk

� denotes the recession
cone of Stk

. It is easy to verify that

Rec�Stk
�⊂⋂

i∈I

	x∈E ��a∗
i �x��0��

and hence that

S6k
+Rec�Stk

�⊂S6k
� (24)

Pick x′ ∈co�ext�Stk
�� and y′ ∈ rec�Stk

� such that zk=x′+y′. By the convexity of
S6k

,

dist�x′�S6k
��max	dist�e�S6k

�� e∈ext�Stk
���

Noting that dist�zk�S6k
�=dist�x′�S6k

−y′�, (24) and y′ ∈Rec�Stk
� imply that

dist�zk�S6k
��dist�x′�S6k

�. Therefore,

dist�zk�S6k
��max	dist�e�S6k

�� e∈ext�Stk
���

and (23) is seen to hold by virtue of (iv) of Lemma 3.1. Recalling that S6k
�j�=

sj+6kej+Cj and making use of (21), one has that

dist�sj+tkej�S6k
� = dist�sj+tkej�S6k

�j��

= dist�sj+tkej�sj+6kej+Cj�

= dist��tk−6k�ej�Cj�

= �tk−6k� dist�ej�Cj�
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(the last equality holds as Cj is a cone and tk−6k >0). It follows from (22) and
(23) that

dist�z�S6k
�����z�−6k�max	dist�ej�Cj�� j∈P�� (25)

By Hoffman’s error bound result, there exists a constant  ∈�0�+� such that

dist�xk�S����xk�=6k� ∀k�
Noting that

dist�z�S� � �z−xk�+dist�xk�S�

= dist�z�S6k
�+dist�xk�S��

it follows from S⊂S6k
that dist�z�S�= limk→dist�z�S6k

�. Thus passing to the
limits in (25) gives

dist�z�S��max	dist�ej�Cj�� j∈P���z��

This shows that ∗�max	dist�ej�Cj�� j∈P�. Combining this with (19), the proof
is completed. �

LEMMA 3.3. Suppose that E∗=span	a∗
i � i∈ I�. Then Theorem 2.1 holds.

Proof. Let P�Ij�sj and ej�j∈P� be as in Lemma 3.1. For each j∈P, by
[1, Corollary 1.1] there exists a subset D′ of Ij such that 	a∗

i � i∈D′� is linearly
independent and

dist�ej�Cj�=dist�ej�CD′�� (26)

where CD′ �=	x∈E ��a∗
i �x��0�∀i∈D′�. Pick D⊂ Ij such that D′ ⊂D and

	a∗
i � i∈D� is a basis of E∗. Since Cj ⊂CD⊂CD′ ,

dist�ej�Cj��dist�ej�CD��dist�ej�CD′��

It follows from (26) that dist�ej�Cj�=dist�ej�CD�. By (ii) and (iii) of Lemma
3.1, it is easy to verify that D∈��I� and dist�ej�CD�=dist�eD�CD� because ej

is clearly a solution of the following linear equation system

�a∗
j �x�=1� ∀i∈D�

Therefore Lemma 3.2 implies that ∗�max	dist�eD�CD� �D∈��I��. To
prove the converse inequality, let D∈��I� and tD �=min	

�a∗i �sD�−ci
1−�a∗i �eD� � i∈ ID�, where

ID �=	i∈ I\D��a∗
i �eD�>1� and the minimum is understood as + if ID=∅.

From Definition 2.1 it is easy to verify that tD >0 and ��sD+teD�= t for each
t∈ �0�tD�. Given t0∈�0�tD�, it follows from the definition of ∗ that

dist�sD+t0eD�S��∗t0� (27)
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Let SD �=	x∈E ��aj�x�−ci�0� ∀∈D�. Then S⊂SD. Noting that SD=sD+CD,
it follows that

dist�sD+t0eD�sD+CD�=dist�sD+t0eD�SD��dist�sD+t0eD�S��

Therefore, t0dist�eD�CD��dist�sD+t0eD�S�. It follows from (27) that
dist�eD�CD��∗. This completes the proof. �

The Proof of Theorem 2�1. Let E0=
⋂

i∈I 	x∈E� �a∗
i �x�=0�. Then E/E0 is

finite dimensional. For each x∈E, let �x� denote the equivalence class containing
x in E/E0, that is, �x�=x+E0. Define â∗

i ∈�E/E0�
∗ such that �â∗

i ��x��=�a∗
i �x�

for each x∈E and i∈ I . It is clear that

�E/E0�
∗=span	â∗

i � i∈ I��

Let �̂��x��=max	�â∗
i ��x��−ci� i∈ I� for each �x�∈E/E0 and Ŝ=	�x�∈E/E0 �

�̂��x���0�. It is easy to verify that a subset D of I has the property �W�
with respect to 	a∗

i � i∈ I� if and only if it has the property �W� with respect to
	â∗

i � i∈ I�. We equip E/E0 with the norm ���·��� � ����x����= inf	�y� �y∈ �x��∀x∈E.
Noting that Ŝ=	�x�� x∈S� and E0+S=S, one has that dist�x�S�=dist��x��Ŝ�
for each x∈E. These and Lemma 3.3 imply that Theorem 2.1 holds.
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